

Diplomirani inženir krajinske arhitekture (un)/diplomirana inženirka krajinske arhitekture (un)

Selected qualifications

Name of qualification

Diplomirani inženir krajinske arhitekture (un)/diplomirana inženirka krajinske arhitekture (un)

Translated title (no legal status)

Bachelor of Science in landscape architecture

Type of qualification

Diploma prve stopnje (UN)

Category of qualification

Izobrazba

Type of education

Academic bachelor's education

Duration

3 years

Credits

180 credits

Admission requirements

- Matura or
- vocational matura with additional examination, or
- school-leaving examination (prior to 1 June 1995) under any four-year secondary school programme.

ISCED field

Field

Tehnika, proizvodne tehnologije in gradbeništvo

ISCED subfield

subfield arhitektura, prostorsko načrtovanje in urbanizem

Qualification level

SQF 7 EQF 6 First level

Learning outcomes

The qualification holder will be able to:

(general competences)

- · analyse and synthesise,
- · demonstrate mastery of basic knowledge,
- demonstrate openness to basic knowledge in the profession,
- demonstrate mastery of elementary numeracy,
- obtain information from various sources,
- process information (including GIS, CAD),
- solve problems,
- make decisions,
- organise and plan (for everyday use, not in the sense of spatial planning),
- be critical and self-critical,
- work in a team.
- establish contacts, communicate, show tolerance to others,
- apply knowledge in practice,
- learn,
- adapt to new conditions (situations),
- work independently,
- design and manage projects,
- show initiative and enterprise,
- show a commitment to quality,
- show a desire for success,

(subject-specific competences)

- identify/define problems in spatial regulation,
- show a capacity for visualisation (conceptions of space),
- show a capacity for abstraction (recognise a general pattern in a mass of phenomena, in the complexity of space),
- project space onto a two-dimensional plane,

- make a (cartographic) representation of space (using various presentation techniques),
- · show a capacity for generalisation,
- simultaneously understand and work with various criteria (in cartographic and graphical representations),
- demonstrate holistic understanding of a landscape (character, typology),
- evaluate a space and its components (demonstrate the ability to attribute different values to a space and its components),
- carry out spatial planning,
- demonstrate understanding of the theoretical foundations of artistic creativity,
- recognise artistic creativity in a developmental context,
- identify the laws and development of settlement in a space and its spatial planning and social implications,
- apply legal principles to the regulation of space and the protection of the environment,
- incorporate legislation from the field of spatial planning, landscape and environmental protection into their professional activity,
- use modern bio-engineering methods in landscape planning,
- identify and evaluate degradation of the environment as a landscape regulation issue,
- identify indigenous plant species in the natural environment,
- map the habitats where indigenous plant species are found,
- use a taxonomy of plants,
- recognise plant species that are used in plantations (ornamental plants) and their use with regard to their characteristics,
- design (create) plantations (functional, ornamental) of (ornamental) plants in a space,
- identify ecosystems or parts of ecosystems in the natural environment (communities, ecosystems, habitat types),
- identify phenomena in the physical world (geomorphological and pedological phenomena, erosion dynamics, geological phenomena, water and climate/meteorological phenomena, etc.)
- demonstrate understanding of the general laws of nature (e.g. evolution/succession, circulation of materials and energy, other processes in the ecosystem, etc.),
- demonstrate understanding of the technical bases of planning infrastructure installations in the environment,
- make sketches/freehand drawings,
- demonstrate a capacity for artistic expression (in various media),
- undertake graphic design elaborate graphic presentations or solutions,
- address problems from the field of landscape engineering: plan pergolas, pavements and paths, walls, drainage, ground design (relief), etc.,
- demonstrate understanding of and evaluate the historical achievements of landscape (garden) design,
- plan the renovation of historical structures,
- apply general concepts, methods, etc. to specific problems (adaptation to context),
- work with a computer (automated planning, processing of images and texts, statistical data, use of spatial information systems), process (spatial) information,
- show capacity for creative searching (the ability to be creatively curious),
- generate a landscape form (with natural characteristics and taking into account design starting points),
- cooperate with experts from related fields: agriculture (horticulture), forestry, water management, acquisition of mineral resources, production of energy, land surveying, environmental protection,
- lay out play areas for children and spaces for recreation and sport,
- demonstrate understanding of the links between landscape design and social and economic development,
- demonstrate understanding of the fundamental principles of the cultivation and production of ornamental and woody plants,
- apply methods of arrangement and comparison of numerical data,

- apply a complete analysis of functions and basic methods of optimisation and demonstrate understanding of the basics of probability theory,
- · carry out statistical data processing,
- demonstrate understanding of the mutual connections between technologies and social and environmental questions,
- demonstrate understanding of theories of wider erosion-related issues and erosional geomorphology as a basis for optimal engineering decisions,
- use plant material for bio-engineering purposes,
- apply the principles of safe, economical, environmentally friendly and reliable addressing of erosion problems and soil degradation problems,
- demonstrate understanding of the principles and fundamental bases of modern biological engineering methods,
- integrate knowledge from various fields (geomorphology, forestry, civil engineering, economics),
- practically address complex real-world problems in the fields of erosion, renaturation and recultivation.

Assessment and completion

Students' knowledge is assessed by means of practical exercises and seminar papers, and also via products, projects, performances, services, etc. and by examinations. Examination performance is graded as follows: 10 (excellent); 9 (very good: above-average knowledge but with some mistakes); 8 (very good: solid results); 7 (good); 6 (adequate: knowledge satisfies minimum criteria); 5–1 (inadequate). In order to pass an examination, a candidate must achieve a grade between adequate (6) and excellent (10).

Progression

Students may enrol in a higher year if by the end of the academic year they have met all enrolment requirements defined by the study programme.

Transitions

Second-cycle master's study programmes (SQF level 8)

Condition for obtaining certificate

In order to complete the programme, students must complete all course units in all subjects in which they have enrolled, for a total of 180 credits.

Awarding body

University of Ljubljana, Faculty of Bioengineering

URL

http://www.bf.uni-lj.si/en/deans-office/news/